perte quadratique

Fonction de perte utilisée dans la régression linéaire, également appelée perte L2. Cette fonction calcule les carrés de la différence entre la valeur prédite d’un modèle pour un exemple étiqueté et la valeur réelle de l’étiquette. En raison de la mise au carré, cette fonction de perte amplifie l’influence des mauvaises prédictions. En d’autres termes, la perte quadratique réagit plus fortement aux anomalies que la perte L1.

Français

perte quadratique n.f.
perte L2   n.f.

Anglais

squared loss
L2 loss

 

Source: Google machine learning glossary 
Voir sur wiki.datafranca.org >