Aller à : navigation, rechercher


Apprentissage profond


Termes privilégiés



Alexnet is the name of the Convolutional Neural Network architecture that won the ILSVRC 2012 competition by a large margin and was responsible for a resurgence of interest in CNNs for Image Recognition. It consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. Alexnet was introduced in ImageNet Classification with Deep Convolutional Neural Networks. Autoencoder

An Autoencoder is a Neural Network model whose goal is to predict the input itself, typically through a “bottleneck” somewhere in the network. By introducing a bottleneck, we force the network to learn a lower-dimensional representation of the input, effectively compressing the input into a good representation. Autoencoders are related to PCA and other dimensionality reduction techniques, but can learn more complex mappings due to their nonlinear nature. A wide range of autoencoder architectures exist, including Denoising Autoencoders, Variational Autoencoders, or Sequence Autoencoders.