Categorical Cross-Entropy Loss



Révision datée du 31 décembre 2018 à 14:04 par Pitpitt (discussion | contributions) (Remplacement de texte — « Termes privilégiés » par « Français »)
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

Domaine

Vocabulary Apprentissage profond

Définition

Français

Anglais

Categorical Cross-Entropy Loss

The categorical cross-entropy loss is also known as the negative log likelihood. It is a popular loss function for categorization problems and measures the similarity between two probability distributions, typically the true labels and the predicted labels. It is given by L = -sum(y * log(y_prediction)) where y is the probability distribution of true labels (typically a one-hot vector) and y_prediction is the probability distribution of the predicted labels, often coming from a softmax.

 Contributeurs : admin