Réseau neuronal de graphes auto-attentif


Définition

Architecture de réseau de neurones pour l'apprentissage automatique à partir de données structurées en graphes, qui exploite des couches d'auto-attention masquées afin de remédier aux lacunes des méthodes antérieures basées sur les réseaux convolutifs.


Compléments

On recense 3 approches à l'apprentissage automatique à partir de graphes : 1) l'utilisation d'un réseau convolutif (c.-à-d. réseau neuronal de graphes convolutif), 2) l'utilisation d'un réseau récurrent (c.-à-d. réseau neuronal de graphes récurrent) et 3) l'utilisation d'un réseau auto-attentif (c.-à-d. réseau de graphes auto-attentif).

Français

réseau neuronal de graphes auto-attentif

réseau de graphes auto-attentif

RGAA

RNGAA

Anglais

graph attention network

GAT

graph attention neural network

GANN

graph transformer


Sources

Source : MILA

Source : paperswithcode

Source: arXiv