« Réseau neuronal d'espaces d'états structurés » : différence entre les versions
Aucun résumé des modifications |
Aucun résumé des modifications |
||
Ligne 12 : | Ligne 12 : | ||
'''modèle S2ES''' | '''modèle S2ES''' | ||
'''architecture à base de séquences d'espaces d'états structurés''' | |||
'''architecture S2ES''' | |||
'''apprentissage à base de séquences d'espaces d'états structurés''' | |||
'''apprentissage S2ES''' | |||
Version du 27 février 2024 à 15:56
Définition
Classe de modèles de séquences pour l'apprentissage profond qui empruntent à la fois aux réseaux récurrents, aux réseaux convolutifs et aux représentations d'espaces d'états.
Compléments
Mamba est exemple de modèle à base de séquences d'espaces d'états structurés développé par des chercheurs de l'Université Carnegie Mellon et de l'Université de Princeton pour répondre à certaines limitations des modèles autoattentifs (transformers), en particulier pour le traitement de longues séquences.
Français
modèle à base de séquences d'espaces d'états structurés
modèle S2ES
architecture à base de séquences d'espaces d'états structurés
architecture S2ES
apprentissage à base de séquences d'espaces d'états structurés
apprentissage S2ES
Anglais
structured state space sequence model
S4 model
S4 architecture
Sources
Contributeurs: Claude Coulombe, Patrick Drouin, wiki