« Modèle large » : différence entre les versions


Aucun résumé des modifications
Aucun résumé des modifications
 
(19 versions intermédiaires par 2 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
__NOTOC__
# Élément de la liste numérotée
== Domaine ==
[[Category:GRAND LEXIQUE FRANÇAIS]]
[[Category:Vocabulaire2]]
[[Category:Google2]]
[[Category:Apprentissage profond2]]
[[Category:scotty2]]
<br />
== Définition ==
== Définition ==
Modèle linéaire qui contient généralement un grand nombre de caractéristiques d'entrée creuses. Ce modèle est dit «large», car il s'agit d'un type particulier de réseau de neurones comportant un grand nombre d'entrées connectées directement au nœud de sortie. Les modèles larges sont souvent plus faciles à déboguer et à inspecter que les modèles profonds. Bien qu'ils ne puissent pas exprimer les non-linéarités par le biais de couches cachées, les modèles larges peuvent utiliser des transformations comme le croisement de caractéristiques et la répartition par classe (''binning'') pour modéliser les non-linéarités de différentes manières.
Modèle linéaire qui contient généralement un grand nombre de caractéristiques d'entrée creuses. Ce modèle est dit «large», car il s'agit d'un type particulier de réseau de neurones comportant un grand nombre d'entrées connectées directement au nœud de sortie. Les modèles larges sont souvent plus faciles à déboguer et à inspecter que les modèles profonds. Bien qu'ils ne puissent pas exprimer les non-linéarités par le biais de couches cachées, les modèles larges peuvent utiliser des transformations comme le croisement de caractéristiques et la répartition par classe (''binning'') pour modéliser les non-linéarités de différentes manières.


À comparer avec le modèle profond.
À comparer avec le '''[[modèle profond]].'''


== Français ==
'''modèle large'''


<br />
== Anglais ==
'''wide model''' 


== Termes privilégiés ==
==Sources==
=== modèle large  <small>n.m.</small> ===


[https://developers.google.com/machine-learning/glossary/  Source : Google machine learning glossary ]


<br />


== Anglais ==
[[Category:GRAND LEXIQUE FRANÇAIS]]
 
[[Category:Apprentissage profond]]
===  wide model===
 
<br/>
<br/>
<br/>
[https://developers.google.com/machine-learning/glossary/  Source: Google machine learning glossary ]
<br/>
<br/>
<br/>

Dernière version du 21 mars 2024 à 21:19

Définition

Modèle linéaire qui contient généralement un grand nombre de caractéristiques d'entrée creuses. Ce modèle est dit «large», car il s'agit d'un type particulier de réseau de neurones comportant un grand nombre d'entrées connectées directement au nœud de sortie. Les modèles larges sont souvent plus faciles à déboguer et à inspecter que les modèles profonds. Bien qu'ils ne puissent pas exprimer les non-linéarités par le biais de couches cachées, les modèles larges peuvent utiliser des transformations comme le croisement de caractéristiques et la répartition par classe (binning) pour modéliser les non-linéarités de différentes manières.

À comparer avec le modèle profond.

Français

modèle large

Anglais

wide model

Sources

Source : Google machine learning glossary