« Sous-échantillonnage par valeur maximale » : différence entre les versions


Aucun résumé des modifications
Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Ligne 24 : Ligne 24 :


'''Max-Pooling'''
'''Max-Pooling'''
[https://computersciencewiki.org/index.php/Max-pooling_/_Pooling  Source: wikipedia]
Source: Claude Coulombe, Datafranca.org

Version du 22 mai 2019 à 14:35

Domaine

Intelligence artificielle
Apprentissage automatique
Réseau de neurones artificiels
Apprentissage profond

Définition

Le sous-échantillonnage par le maximum (en anglais max-pooling) est une technique utilisée au niveau des couches de partage (pooling layers) des réseaux de neurones convolutifs (RNC) (Convolutional Neural Networks - CNN) pour sous-échantillonner les données afin de réduire le nombre de paramètres, la quantité de calculs et par conséquent le sur-ajustement (overfitting). Plus précisément, le sous-échantillonnage par le maximum consiste à réduire la dimension des données en ne conservant que l’information la plus importante. Par exemple, dans le cas d'une image, la technique de sous-échantillonnage par le maximum ne retiendra que le pixel du voisinage qui a la plus forte intensité.

Français

sous-échantillonnage par le maximum locution nominale, masc.


Anglais

Max-Pooling

Source: wikipedia Source: Claude Coulombe, Datafranca.org