« Inégalité de Boole-Bonferroni-Fréchet » : différence entre les versions
Aucun résumé des modifications |
m (Remplacement de texte : « Catégorie:GRAND LEXIQUE FRANÇAIS » par « ») |
||
(6 versions intermédiaires par 2 utilisateurs non affichées) | |||
Ligne 1 : | Ligne 1 : | ||
== Définition == | == Définition == | ||
En théorie des probabilités, l'inégalité de Boole affirme que, pour toute famille finie ou dénombrable d'événements, la probabilité que l'un au moins des événements se réalise est inférieure ou égale à la somme des probabilités des événements pris isolément. | En théorie des probabilités, l'inégalité de Boole affirme que, pour toute famille finie ou dénombrable d'événements, la [[probabilité]] que l'un au moins des événements se réalise est inférieure ou égale à la somme des probabilités des événements pris isolément. | ||
Les inégalités de Bonferroni, généralisent l'inégalité de Boole. Elles fournissent des majorants et des minorants de la probabilité d'unions finies d'événements. | Les inégalités de Bonferroni, généralisent l'inégalité de Boole. Elles fournissent des majorants et des minorants de la probabilité d'unions finies d'événements. | ||
Ligne 9 : | Ligne 9 : | ||
'''Boole-Bonferroni-Fréchet inequality''' | '''Boole-Bonferroni-Fréchet inequality''' | ||
[ | ==Sources== | ||
[https://www.isi-web.org/glossary?language=2 Source : ISI Glossaire ] | |||
[https://isi.cbs.nl/glossary/term412.htm Source : ISI ] | |||
[https://fr.wikipedia.org/wiki/In%C3%A9galit%C3%A9_de_Boole Source : Wikipédia ] | [https://fr.wikipedia.org/wiki/In%C3%A9galit%C3%A9_de_Boole Source : Wikipédia ] | ||
{{Modèle:Statistiques}} | |||
[[Catégorie:Statistiques]] | [[Catégorie:Statistiques]] | ||
Dernière version du 23 août 2024 à 19:34
Définition
En théorie des probabilités, l'inégalité de Boole affirme que, pour toute famille finie ou dénombrable d'événements, la probabilité que l'un au moins des événements se réalise est inférieure ou égale à la somme des probabilités des événements pris isolément. Les inégalités de Bonferroni, généralisent l'inégalité de Boole. Elles fournissent des majorants et des minorants de la probabilité d'unions finies d'événements.
Français
inégalité de Boole-Bonferroni-Fréchet
Anglais
Boole-Bonferroni-Fréchet inequality
Sources
Contributeurs: Claire Gorjux, wiki