« Loi forte des grands nombres » : différence entre les versions


m (Remplacement de texte — « [[:Catégorie:ISI | © Glossaire » par « [[:Catégorie:Statistiques | © Glossaire »)
m (Remplacement de texte : « Catégorie:GRAND LEXIQUE FRANÇAIS » par «  »)
 
(7 versions intermédiaires par 2 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
== Définition ==
== Définition ==
Une loi forte des grands nombres est une loi mathématique selon laquelle la moyenne des n premiers termes d'une suite de variables aléatoires converge presque sûrement vers une constante (non aléatoire), lorsque n tend vers l'infini. Lorsque ces variables ont même [[espérance]], par exemple lorsqu'elles ont toutes même loi, cette limite constante est l'espérance commune à toutes les variables aléatoires de cette suite.
== Français ==
== Français ==
''' loi forte des grands nombres'''
'''loi forte des grands nombres'''


== Anglais ==
== Anglais ==
''' strong law of large numbers'''
'''strong law of large numbers'''
 
 
==Sources==
 
[https://www.isi-web.org/glossary?language=2  Source : ISI Glossaire ]
 
[https://isi.cbs.nl/glossary/term3194.htm  Source : ISI ]


<small>
[https://fr.wikipedia.org/wiki/Loi_forte_des_grands_nombres  Source : Wikipédia ]


[http://isi.cbs.nl/glossary/term3194.htm  Source : ISI ]
{{Modèle:Statistiques}}


[[:Catégorie:Statistiques | © Glossaire de la statistique DataFranca]]<br>
[[Catégorie:Statistiques]]
[[Catégorie:Statistiques]]
[[Catégorie:ISI]]

Dernière version du 23 août 2024 à 19:37

Définition

Une loi forte des grands nombres est une loi mathématique selon laquelle la moyenne des n premiers termes d'une suite de variables aléatoires converge presque sûrement vers une constante (non aléatoire), lorsque n tend vers l'infini. Lorsque ces variables ont même espérance, par exemple lorsqu'elles ont toutes même loi, cette limite constante est l'espérance commune à toutes les variables aléatoires de cette suite.

Français

loi forte des grands nombres

Anglais

strong law of large numbers


Sources

Source : ISI Glossaire

Source : ISI

Source : Wikipédia


GLOSSAIRE DE LA STATISTIQUE

Isi-logo-stats.jpg

Contributeurs: Claire Gorjux, wiki