« Théorème de Radon-Nikodym » : différence entre les versions


m (Remplacement de texte — « ISI | © Glossaire » par « Statistiques | © Glossaire »)
m (Remplacement de texte : « Catégorie:GRAND LEXIQUE FRANÇAIS » par «  »)
 
(7 versions intermédiaires par 2 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
== Définition ==
== Définition ==
Le théorème de Radon-Nikodym est un résultat de la théorie des mesures qui exprime la relation entre deux mesures définies sur le même espace mesurable. Une mesure est une fonction d'ensemble qui attribue une grandeur cohérente aux sous-ensembles mesurables d'un espace mesurable.
Parmi les exemples de mesure, citons l'aire et le volume, où les sous-ensembles sont des ensembles de points, ou la probabilité d'un événement, qui est un sous-ensemble de résultats possibles dans un espace de probabilité plus large.
== Français ==
== Français ==
''' théorème de Radon-Nikodym '''
''' théorème de Radon-Nikodym '''
Ligne 6 : Ligne 10 :
''' Radon-Nikodym theorem'''
''' Radon-Nikodym theorem'''


<small>
==Sources==
 
[https://www.isi-web.org/glossary?language=2  Source : ISI Glossaire ]
 
[https://isi.cbs.nl/glossary/term2691.htm Source : ISI ]
 
[https://en.wikipedia.org/wiki/Radon%E2%80%93Nikodym_theorem  Source : Wikipédia ]


[http://isi.cbs.nl/glossary/term2691.htm Source : ISI ]
{{Modèle:Statistiques}}


[[:Catégorie:Statistiques | © Glossaire de la statistique DataFranca]]<br>
[[Catégorie:Statistiques]]
[[Catégorie:Statistiques]]
[[Catégorie:ISI]]

Dernière version du 23 août 2024 à 20:17

Définition

Le théorème de Radon-Nikodym est un résultat de la théorie des mesures qui exprime la relation entre deux mesures définies sur le même espace mesurable. Une mesure est une fonction d'ensemble qui attribue une grandeur cohérente aux sous-ensembles mesurables d'un espace mesurable.

Parmi les exemples de mesure, citons l'aire et le volume, où les sous-ensembles sont des ensembles de points, ou la probabilité d'un événement, qui est un sous-ensemble de résultats possibles dans un espace de probabilité plus large.

Français

théorème de Radon-Nikodym

Anglais

Radon-Nikodym theorem

Sources

Source : ISI Glossaire

Source : ISI

Source : Wikipédia


GLOSSAIRE DE LA STATISTIQUE

Isi-logo-stats.jpg

Contributeurs: Claire Gorjux, wiki