« Apprentissage automatique » : différence entre les versions


Aucun résumé des modifications
m (Remplacement de texte : « ↵↵==Sources== » par «  ==Sources== »)
 
(8 versions intermédiaires par le même utilisateur non affichées)
Ligne 1 : Ligne 1 :
==Définition==
==Définition==


L’apprentissage automatique est un champ d’études de l’intelligence artificielle. Ce domaine se fonde sur les statistiques pour donner à l’ordinateur la capacité d’apprendre par lui-même à partir de jeux de données plutôt qu’à partir d’instructions explicitement programmées afin de s’acquitter d’une tâche.
L’apprentissage automatique est un champ d’études de l’intelligence artificielle. Ce domaine se fonde sur les statistiques pour donner à l’ordinateur, par le moyen d’un algorithme ou d’un arbre de décision,  la capacité d’apprendre par lui-même à partir de jeux de données plutôt qu’à partir d’instructions explicitement programmées afin de s’acquitter d’une tâche.


On rencontre parfois le calque de l’anglais apprentissage machine et les termes [[apprentissage statistique]] et apprentissage artificiel pour désigner le même concept.
On rencontre parfois le calque de l’anglais apprentissage machine et les termes [[apprentissage statistique]] et apprentissage artificiel pour désigner le même concept.
Ligne 41 : Ligne 41 :


'''automatic learning '''
'''automatic learning '''
==Sources==
*[https://datafloq.com/read/entity/machine-learning/   Source : datafloq]


<small>
*[https://fr.wikipedia.org/wiki/Apprentissage_automatique Source: Wikipedia, ''Apprentissage automatique''.]
*[https://fr.wikipedia.org/wiki/Apprentissage_automatique Source: Wikipedia, ''Apprentissage automatique''.]


Ligne 49 : Ligne 51 :
Note: '''apprentissage automatique''' et '''apprentissage machine''' sont des désignations publiées au Journal officiel de la République française le 9 décembre 2018 et normalisées par l'ISO en collaboration avec la Commission électrotechnique internationale.
Note: '''apprentissage automatique''' et '''apprentissage machine''' sont des désignations publiées au Journal officiel de la République française le 9 décembre 2018 et normalisées par l'ISO en collaboration avec la Commission électrotechnique internationale.


</small><br> <div style="border:2px solid #336699; background: #f6f6f6; padding: 1em; margin-bottom:1em; width: 90%;"><html><a href="https://datafranca.org/wiki/Cat%C3%A9gorie:101"><img src="https://datafranca.org/images/icone-101-mots.png" width="250"></a></html>
{{Modèle:101}}
===Complément audio===
[https://datafranca.org/quest-ce-que-lapprentissage-automatique/ Qu’est-ce que l’apprentissage automatique?]


===Compléments vidéos=== 
{{Modèle:GDT}}
<!--
* [https://www.wired.com/video/watch/5-levels-machine-learning  Computer Scientist Explains Machine Learning in 5 Levels of Difficulty ]
* [https://www.youtube.com/watch?v=J4Qsr93L1qs    What's the Difference between Machine Learning, and Deep Learning? ]
* [https://www.youtube.com/watch?v=weAz4IMe2O8    Real Talk with Machine Learning Engineer at Airbnb Experiences]
* [https://www.youtube.com/watch?v=kn-X2GTx5FQ    Real Talk with LinkedIn Staff Machine Learning Engineer ]
* [https://www.youtube.com/watch?v=0eO2TSVVP1Y    OpenAI Five: When AI beats professional gamers]
* [https://www.youtube.com/watch?v=YaKMeAlHgqQ    How do I select features for Machine Learning?]
* [https://www.youtube.com/watch?v=TyKzBoEaeEM    Python Libraries for Machine Learning You Must Know!]
* [https://www.youtube.com/watch?v=SVlRcF5NgD4    Do you need Machine Learning knowledge as a Data Engineer?]
* [https://www.youtube.com/watch?v=ynfeIhXVCxA    Machine Learning Expert talks about Python for Data Engineering and Data Science]
* [https://www.youtube.com/watch?v=HcqpanDadyQ    What is Machine Learning?]
* [https://www.youtube.com/watch?v=f_uwKZIAeM0  What is Machine Learning?]
-->
<br></div><br><br>


[[Catégorie:GDT]]
[[Catégorie:GDT]]
[[Catégorie:GRAND LEXIQUE FRANÇAIS]]
[[Catégorie:GRAND LEXIQUE FRANÇAIS]]
[[Catégorie:101]]
[[Catégorie:101]]

Dernière version du 30 août 2024 à 13:58

Définition

L’apprentissage automatique est un champ d’études de l’intelligence artificielle. Ce domaine se fonde sur les statistiques pour donner à l’ordinateur, par le moyen d’un algorithme ou d’un arbre de décision,  la capacité d’apprendre par lui-même à partir de jeux de données plutôt qu’à partir d’instructions explicitement programmées afin de s’acquitter d’une tâche.

On rencontre parfois le calque de l’anglais apprentissage machine et les termes apprentissage statistique et apprentissage artificiel pour désigner le même concept.

L’apprentissage automatique se divise en grandes catégories : l’apprentissage supervisé, l’apprentissage semi-supervisé, l’apprentissage non supervisé, l’apprentissage par transfert, l’apprentissage par renforcement, l’apprentissage par renforcement inverse et l’apprentissage profond.

Compléments

L’apprentissage supervisé (supervised learning) consiste à apprendre à exécuter une tâche à partir d’exemples annotés par une personne. L’annotation est un processus par lequel on associe un exemple à la réponse que l’on désire apprendre.

En apprentissage supervisé l’algorithme cherche à minimiser l’erreur, c’est à dire l’écart entre la prédiction de l’algorithme et la vraie réponse (i.e. l’annotation).

En apprentissage non-supervisé ( unsupervised learning), l’algorithme découvre par lui-même des régularités statistiques et reconnaît des formes ou des structures dans les données.

L’absence d’annotation est ce qui distingue une tâche d’apprentissage non-supervisé d’une tâche d’apprentissage supervisé. L’apprentissage non-supervisé se fait sur la base de la ressemblance entre les exemples ou les données.

En apprentissage par renforcement (reinforcement learning), un agent apprend un comportement à partir d’expériences de façon à optimiser les récompenses reçues au cours du temps. Tout comme l’apprentissage non-supervisé, l’apprentissage par renforcement n’a pas besoin de données annotées.

L’apprentissage par renforcement se fait sur la base de récompenses ou de punitions reçues en retour d’une action exécutée par un agent dans son environnement.


L'apprentissage automatique comporte généralement deux phases:

1- L'entraînement du modèle sur des données afin de résoudre une tâche pratique, telle que traduire un discours, estimer une densité de probabilité, reconnaître la présence d'un chat dans une photographie ou participer à la conduite d'un véhicule autonome.

2- La mise en production où, le modèle étant entraîné, de nouvelles données peuvent alors être soumises afin d'obtenir le résultat correspondant à la tâche souhaitée. En pratique, certains systèmes peuvent poursuivre leur apprentissage une fois en production.

Français

apprentissage automatique

apprentissage machine

apprentissage statistique

apprentissage artificiel

Anglais

machine learning

automatic learning

Sources

Note: apprentissage automatique et apprentissage machine sont des désignations publiées au Journal officiel de la République française le 9 décembre 2018 et normalisées par l'ISO en collaboration avec la Commission électrotechnique internationale.


101 MOTS DE L' IA
Ce terme est sélectionné pour le livre « Les 101 mots de l'intelligence artificielle »