« Bloc incomplet partiellement équilibré » : différence entre les versions
m (Remplacement de texte : « ↵↵<small> » par « ==Sources== ») |
m (Remplacement de texte : « ↵↵==Sources== » par « ==Sources== ») |
||
(7 versions intermédiaires par le même utilisateur non affichées) | |||
Ligne 1 : | Ligne 1 : | ||
==en construction== | |||
== Définition == | == Définition == | ||
== Français == | == Français == | ||
Ligne 7 : | Ligne 8 : | ||
== Anglais == | == Anglais == | ||
''' partially balanced incomplete block design''' | ''' partially balanced incomplete block design''' | ||
A partially balanced incomplete block design with n associate classes (PBIBD(n)) is a block design based on a v-set X with b blocks each of size k and with each element appearing in r blocks, such that there is an association scheme with n classes defined on X where, if elements x and y are ith associates, 1 ≤ i ≤ n, then they are together in precisely λi blocks. | A partially balanced incomplete block design with n associate classes (PBIBD(n)) is a block design based on a v-set X with b blocks each of size k and with each element appearing in r blocks, such that there is an association scheme with n classes defined on X where, if elements x and y are ith associates, 1 ≤ i ≤ n, then they are together in precisely λi blocks. | ||
==Sources== | ==Sources== | ||
[https://www.isi-web.org/glossary?language=2 Source : ISI Glossaire ] | |||
[ | [https://term2425.htm Source : ISI ] | ||
[https://en.wikipedia.org/wiki/Block_design Source : Wikipédia ] | [https://en.wikipedia.org/wiki/Block_design Source : Wikipédia ] | ||
Ligne 22 : | Ligne 22 : | ||
[[Catégorie:Statistiques]] | [[Catégorie:Statistiques]] | ||
[[Catégorie:ISI]] | [[Catégorie:ISI]] | ||
[[Catégorie:Vocabulaire]] |
Dernière version du 30 août 2024 à 14:06
en construction
Définition
Français
bloc incomplet partiellement équilibré
Anglais
partially balanced incomplete block design
A partially balanced incomplete block design with n associate classes (PBIBD(n)) is a block design based on a v-set X with b blocks each of size k and with each element appearing in r blocks, such that there is an association scheme with n classes defined on X where, if elements x and y are ith associates, 1 ≤ i ≤ n, then they are together in precisely λi blocks.
Sources
Contributeurs: Evan Brach, wiki