« Autoencodeur débruiteur » : différence entre les versions
m (Imeziani a déplacé la page Auto-encodeur débruiteur vers Autoencodeur débruiteur) |
m (Remplacement de texte : « ↵↵==Sources== » par « ==Sources== ») |
||
(7 versions intermédiaires par le même utilisateur non affichées) | |||
Ligne 2 : | Ligne 2 : | ||
Un réseau de neurones artificiels utilisé pour l'apprentissage non supervisé de caractéristiques discriminantes. L'objectif d'un auto-encodeur est d'apprendre une représentation (encodage) d'un ensemble de données, généralement dans le but de réduire la dimension de cet ensemble. Récemment, le concept d'auto-encodeur est devenu plus largement utilisé pour l'apprentissage de modèles génératifs. | Un réseau de neurones artificiels utilisé pour l'apprentissage non supervisé de caractéristiques discriminantes. L'objectif d'un auto-encodeur est d'apprendre une représentation (encodage) d'un ensemble de données, généralement dans le but de réduire la dimension de cet ensemble. Récemment, le concept d'auto-encodeur est devenu plus largement utilisé pour l'apprentissage de modèles génératifs. | ||
Parmi les différentes techniques qui existent pour empêcher un auto-encodeur d'apprendre la fonction identité et améliorer sa capacité à apprendre des représentations plus riches, il y a l'auto-encodeur débruiteur | Parmi les différentes techniques qui existent pour empêcher un auto-encodeur d'apprendre la fonction identité et améliorer sa capacité à apprendre des représentations plus riches, il y a l'auto-encodeur débruiteur. | ||
<!-- | |||
Note - | Note - | ||
Ce dernier prend une entrée partiellement corrompue et apprend à récupérer l'entrée originale débruitée. Cette technique a été introduite avec une approche spécifique d'une bonne représentation. Une bonne représentation est celle qui peut être obtenue de manière robuste à partir d'une entrée corrompue et qui sera utile pour récupérer l'entrée débruitée correspondante. --> | |||
Ce dernier prend une entrée partiellement corrompue et apprend à récupérer l'entrée originale débruitée. Cette technique a été introduite avec une approche spécifique d'une bonne représentation. Une bonne représentation est celle qui peut être obtenue de manière robuste à partir d'une entrée corrompue et qui sera utile pour récupérer l'entrée débruitée correspondante. | |||
== Français == | == Français == | ||
Ligne 12 : | Ligne 11 : | ||
== Anglais == | == Anglais == | ||
'''Denoising autoencoder | '''Denoising autoencoder''' | ||
==Sources== | |||
[https://www.apprentissageprofond.org/ Source : ''L'apprentissage profond'', Ian Goodfellow, Yoshua Bengio et Aaron Courville Éd. Massot 2018 ] | [https://www.apprentissageprofond.org/ Source : ''L'apprentissage profond'', Ian Goodfellow, Yoshua Bengio et Aaron Courville Éd. Massot 2018 ] | ||
[https://en.wikipedia.org/wiki/Autoencoder Source: Wikipedia ] | [https://en.wikipedia.org/wiki/Autoencoder Source: Wikipedia ] | ||
[https://paperswithcode.com/method/denoising-autoencoder Source: paperswithcode ] | |||
[[Catégorie: | [[Catégorie:GRAND LEXIQUE FRANÇAIS]] | ||
Dernière version du 30 août 2024 à 14:07
Définition
Un réseau de neurones artificiels utilisé pour l'apprentissage non supervisé de caractéristiques discriminantes. L'objectif d'un auto-encodeur est d'apprendre une représentation (encodage) d'un ensemble de données, généralement dans le but de réduire la dimension de cet ensemble. Récemment, le concept d'auto-encodeur est devenu plus largement utilisé pour l'apprentissage de modèles génératifs.
Parmi les différentes techniques qui existent pour empêcher un auto-encodeur d'apprendre la fonction identité et améliorer sa capacité à apprendre des représentations plus riches, il y a l'auto-encodeur débruiteur.
Français
Autoencodeur débruiteur
Anglais
Denoising autoencoder
Sources
Source : L'apprentissage profond, Ian Goodfellow, Yoshua Bengio et Aaron Courville Éd. Massot 2018
Contributeurs: Imane Meziani, Jacques Barolet, wiki