« Apprentissage profond causal » : différence entre les versions


(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Causal Deep Learning''' Causality has the potential to truly transform the way we solve a large number of real-world problems. Yet, so far, its potential largely remains to be unlocked as causality often requires crucial assumptions which cannot be tested in practice. To address this challenge, we propose a new way of thinking about causality -- we call this c... »)
 
Aucun résumé des modifications
Ligne 2 : Ligne 2 :


== Définition ==
== Définition ==
XXXXXXXXX
L'apprentissage profond causal exploite les connaissances causales partielles entre certaines variables d'intérêt, il caractérise quantitativement la forme fonctionnelle de ces variables et il prend en compte la dimension temporelle, fournissant ainsi des informations significatives aux chercheurs.


== Français ==
== Français ==
''' XXXXXXXXX '''
''' apprentissage profond causal '''


== Anglais ==
== Anglais ==
''' Causal Deep Learning'''
''' causal deep learning'''


Causality has the potential to truly transform the way we solve a large number of real-world problems. Yet, so far, its potential largely remains to be unlocked as causality often requires crucial assumptions which cannot be tested in practice. To address this challenge, we propose a new way of thinking about causality -- we call this causal deep learning. Our causal deep learning framework spans three dimensions:
''' CDL'''
(1) a structural dimension, which incorporates partial yet testable causal knowledge rather than assuming either complete or no causal knowledge among the variables of interest;
(2) a parametric dimension, which encompasses parametric forms that capture the type of relationships among the variables of interest; and (3) a temporal dimension, which captures exposure times or how the variables of interest interact (possibly causally) over time. Causal deep learning enables us to make progress on a variety of real-world problems by leveraging partial causal knowledge (including independencies among variables) and quantitatively characterising causal relationships among variables of interest (possibly over time).
Our framework clearly identifies which assumptions are testable and which ones are not, such that the resulting solutions can be judiciously adopted in practice. Using our formulation we can combine or chain together causal representations to solve specific problems without losing track of which assumptions are required to build these solutions, pushing real-world impact in healthcare, economics and business, environmental sciences and education, through causal deep learning.


''Causal Deep Learning is a framework leverages partial causal knowledge among some variables of interest, it quantitatively characterizes the functional form of these variables, and it considers the dimension of time, thus providing significant insights to researchers and decision-makers.''


== Source ==
== Source ==


[https://arxiv.org/abs/2303.02186  Source : arxiv]
[https://arxiv.org/pdf/2303.02186  Source : arxiv]


[https://neo.uqtr.ca/2023/05/03/utiliser-lintelligence-artificielle-pour-ameliorer-le-traitement-de-la-depression-majeure/  Source : UQTR]




[[Catégorie:vocabulary]]
 
[[Catégorie:publication]]

Version du 26 septembre 2024 à 18:53

en construction

Définition

L'apprentissage profond causal exploite les connaissances causales partielles entre certaines variables d'intérêt, il caractérise quantitativement la forme fonctionnelle de ces variables et il prend en compte la dimension temporelle, fournissant ainsi des informations significatives aux chercheurs.

Français

apprentissage profond causal

Anglais

causal deep learning

CDL

Causal Deep Learning is a framework leverages partial causal knowledge among some variables of interest, it quantitatively characterizes the functional form of these variables, and it considers the dimension of time, thus providing significant insights to researchers and decision-makers.

Source

Source : arxiv

Source : UQTR

Contributeurs: Arianne , wiki