« Régularisation L2 » : différence entre les versions


Aucun résumé des modifications
m (Remplacement de texte : « Category:Termino 2019 » par «  »)
 
(30 versions intermédiaires par 5 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
__NOTOC__
==Définition==
== Domaine ==
Régularisation qui ajuste à la baisse les poids au sein d'un modèle proportionnellement à la somme des carrés de leurs valeurs afin de contrer le surajustement.
[[Category:Vocabulaire]]Vocabulaire<br />
[[Category:Google]]Google<br />
[[Category:Apprentissage profond]]Apprentissage profond<br />
[[Category:scotty]]
[[Category:9]


<br />
Remarque : la régularisation L2 vise à ce que les poids dont la valeur est marginale (valeur positive ou négative très élevée ou très faible) se rapprochent le plus possible de 0 (sans jamais l'atteindre).


== Définition ==
==Français==
Type de régularisation qui pénalise les pondérations proportionnellement à la somme de leurs carrés. La régularisation L2 aide à rapprocher de zéro la pondération des anomalies (celles dont la valeur est très positive ou très négative), sans pour autant atteindre zéro. (À comparer à la '''régularisation L1'''). La régularisation L2 améliore toujours la généralisation des modèles linéaires.
'''régularisation L2'''  


'''régularisation de Ridge '''


<br />
==Anglais==
'''L2 regularization'''


== Termes privilégiés ==
'''Ridge regularization'''
=== régularisation L2 n.f.===




<br />
==Sources==
Source : Géron, Aurélien (2017). ''Deep Learning avec TensorFlow - Mise en oeuvre et cas concrets'', Paris, Dunod, 360 pages.


== Anglais ==
[https://developers.google.com/machine-learning/crash-course/regularization-for-simplicity/l2-regularization?hl=fr  Source : Developers.google Machine learning, ''Régularisation à des fins de simplicité : régularisation L₂.'']


===  L2 regularization===
[https://developers.google.com/machine-learning/glossary/ Source : ''Google machine learning glossary'']


<br/>
[[Utilisateur:Patrickdrouin | Source : Termino]]
<br/>
 
<br/>
[[Category:GRAND LEXIQUE FRANÇAIS]]
[https://developers.google.com/machine-learning/glossary/ Source: Google machine learning glossary ]
[[Category:Apprentissage profond]]
<br/>
<br/>
<br/>

Dernière version du 11 octobre 2024 à 08:33

Définition

Régularisation qui ajuste à la baisse les poids au sein d'un modèle proportionnellement à la somme des carrés de leurs valeurs afin de contrer le surajustement.

Remarque : la régularisation L2 vise à ce que les poids dont la valeur est marginale (valeur positive ou négative très élevée ou très faible) se rapprochent le plus possible de 0 (sans jamais l'atteindre).

Français

régularisation L2

régularisation de Ridge

Anglais

L2 regularization

Ridge regularization


Sources

Source : Géron, Aurélien (2017). Deep Learning avec TensorFlow - Mise en oeuvre et cas concrets, Paris, Dunod, 360 pages.

Source : Developers.google Machine learning, Régularisation à des fins de simplicité : régularisation L₂.

Source : Google machine learning glossary

Source : Termino