« Réseau récurrent à portes » : différence entre les versions
Aucun résumé des modifications |
Aucun résumé des modifications |
||
Ligne 10 : | Ligne 10 : | ||
== Termes privilégiés == | == Termes privilégiés == | ||
===terme=== | |||
== Anglais == | == Anglais == | ||
'''GRU''' | '''GRU''' |
Version du 12 mars 2018 à 16:05
Domaine
Vocabulary Apprentissage profond
Définition
Termes privilégiés
terme
Anglais
GRU
The Gated Recurrent Unit is a simplified version of an LSTM unit with fewer parameters. Just like an LSTM cell, it uses a gating mechanism to allow RNNs to efficiently learn long-range dependency by preventing the vanishing gradient problem. The GRU consists of a reset and update gate that determine which part of the old memory to keep vs. update with new values at the current time step. • Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation • Recurrent Neural Network Tutorial, Part 4 – Implementing a GRU/LSTM RNN with Python and Theano
Contributeurs: Claude Coulombe, Jacques Barolet, Patrick Drouin, wiki