« Apprentissage par renforcement » : différence entre les versions
Aucun résumé des modifications Balises : mobile edit mobile web edit |
Aucun résumé des modifications Balise : Éditeur de wikicode 2017 |
||
Ligne 4 : | Ligne 4 : | ||
[[Category:GRAND LEXIQUE FRANÇAIS]]GRAND LEXIQUE FRANÇAIS<br /> | [[Category:GRAND LEXIQUE FRANÇAIS]]GRAND LEXIQUE FRANÇAIS<br /> | ||
[[Category:scotty2]]<br /> | [[Category:scotty2]]<br /> | ||
== Définition == | == Définition == | ||
En apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome (robot, etc.), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement, et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative. L'agent cherche, au travers d'expériences itérées, un comportement décisionnel (appelé stratégie ou politique, et qui est une fonction associant à l'état courant l'action à exécuter) optimal, en ce sens qu'il maximise la somme des récompenses au cours du temps. <br /> | En apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome (robot, etc.), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement, et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative. L'agent cherche, au travers d'expériences itérées, un comportement décisionnel (appelé stratégie ou politique, et qui est une fonction associant à l'état courant l'action à exécuter) optimal, en ce sens qu'il maximise la somme des récompenses au cours du temps. <br /> | ||
L’apprentissage par renforcement diffère fondamentalement de l''''apprentissage supervisé''' et de l''''apprentissage non supervisé''' par ce côté interactif et itératif: l’agent essaie plusieurs solutions, on parle « d’exploration », observe la réaction de l’environnement et adapte son comportement (les variables) pour trouver la meilleure stratégie. On dira qu'il « exploite » le résultat de ses explorations. | L’apprentissage par renforcement diffère fondamentalement de l''''apprentissage supervisé''' et de l''''apprentissage non supervisé''' par ce côté interactif et itératif: l’agent essaie plusieurs solutions, on parle « d’exploration », observe la réaction de l’environnement et adapte son comportement (les variables) pour trouver la meilleure stratégie. On dira qu'il « exploite » le résultat de ses explorations. | ||
Voir [[apprentissage par renforcement inverse]] | Voir [[apprentissage par renforcement inverse]] | ||
== Français == | == Français == | ||
'''apprentissage par renforcement''' n. m. === | '''apprentissage par renforcement''' n. m. === | ||
== Anglais == | == Anglais == | ||
'''reinforcement learning''' | '''reinforcement learning''' | ||
[https://fr.wikipedia.org/wiki/Apprentissage_par_renforcement ''Source: Wikipedia'' ] | [https://fr.wikipedia.org/wiki/Apprentissage_par_renforcement ''Source: Wikipedia'' ] | ||
Version du 15 juin 2019 à 09:54
Domaine
intelligence artificielle
GRAND LEXIQUE FRANÇAIS
Définition
En apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome (robot, etc.), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement, et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative. L'agent cherche, au travers d'expériences itérées, un comportement décisionnel (appelé stratégie ou politique, et qui est une fonction associant à l'état courant l'action à exécuter) optimal, en ce sens qu'il maximise la somme des récompenses au cours du temps.
L’apprentissage par renforcement diffère fondamentalement de l'apprentissage supervisé et de l'apprentissage non supervisé par ce côté interactif et itératif: l’agent essaie plusieurs solutions, on parle « d’exploration », observe la réaction de l’environnement et adapte son comportement (les variables) pour trouver la meilleure stratégie. On dira qu'il « exploite » le résultat de ses explorations.
Voir apprentissage par renforcement inverse
Français
apprentissage par renforcement n. m. ===
Anglais
reinforcement learning
Contributeurs: Claude Coulombe, Jacques Barolet, wiki, Robert Meloche