« Modèle linéaire généralisé » : différence entre les versions
Aucun résumé des modifications Balise : Éditeur de wikicode 2017 |
Aucun résumé des modifications Balise : Éditeur de wikicode 2017 |
||
Ligne 1 : | Ligne 1 : | ||
== Domaine == | == Domaine == | ||
[[Category:GRAND LEXIQUE FRANÇAIS]] | [[Category:GRAND LEXIQUE FRANÇAIS]] | ||
Ligne 6 : | Ligne 5 : | ||
[[Category:Apprentissage profond]]Apprentissage profond<br /> | [[Category:Apprentissage profond]]Apprentissage profond<br /> | ||
[[Category:scotty2]] | [[Category:scotty2]] | ||
== Définition == | == Définition == | ||
Généralisation des modèles de régression des moindres carrés, qui sont basés sur le bruit gaussien, à d'autres types de modèles basés sur d'autres types de bruit, par exemple le bruit de grenaille ou le bruit catégorique. Exemples de modèles linéaires généralisés : | Généralisation des modèles de régression des moindres carrés, qui sont basés sur le bruit gaussien, à d'autres types de modèles basés sur d'autres types de bruit, par exemple le bruit de grenaille ou le bruit catégorique. Exemples de modèles linéaires généralisés : | ||
* Régression logistique | * Régression logistique | ||
* Régression à classes multiples | * Régression à classes multiples | ||
Ligne 17 : | Ligne 13 : | ||
La puissance d'un modèle linéaire généralisé est limitée par les caractéristiques de celui-ci. Contrairement à un modèle profond, un modèle généralisé ne peut pas «apprendre de nouvelles caractéristiques». | La puissance d'un modèle linéaire généralisé est limitée par les caractéristiques de celui-ci. Contrairement à un modèle profond, un modèle généralisé ne peut pas «apprendre de nouvelles caractéristiques». | ||
== Français == | == Français == | ||
''' modèle linéaire généralisé n.m.''' | |||
== Anglais == | |||
''' generalized linear model''' | |||
[https://developers.google.com/machine-learning/glossary/ Source: Google machine learning glossary ] | [https://developers.google.com/machine-learning/glossary/ Source: Google machine learning glossary ] | ||
Version du 15 juin 2019 à 21:25
Domaine
Apprentissage profond
Définition
Généralisation des modèles de régression des moindres carrés, qui sont basés sur le bruit gaussien, à d'autres types de modèles basés sur d'autres types de bruit, par exemple le bruit de grenaille ou le bruit catégorique. Exemples de modèles linéaires généralisés :
- Régression logistique
- Régression à classes multiples
- Régression des moindres carrés
La puissance d'un modèle linéaire généralisé est limitée par les caractéristiques de celui-ci. Contrairement à un modèle profond, un modèle généralisé ne peut pas «apprendre de nouvelles caractéristiques».
Français
modèle linéaire généralisé n.m.
Anglais
generalized linear model
Contributeurs: Claire Gorjux, Jacques Barolet, wiki, Robert Meloche