« Régularisation » : différence entre les versions


Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Ligne 1 : Ligne 1 :
== Domaine ==
[[Category:GRAND LEXIQUE FRANÇAIS]]
[[Category:GRAND LEXIQUE FRANÇAIS]]
[[Category:Vocabulaire2]]
[[Category:Vocabulaire2]]
[[Category:Google2]]
[[Category:Google2]]
[[Category:scotty2]]
[[Category:Intelligence artificielle]]
[[Category:Intelligence artificielle]]Intelligence artificielle<br />
[[Catégorie:Apprentissage profond]]
[[Catégorie:Apprentissage profond]]Apprentissage profond<br>
[[Category:Termino 2019]]
[[Category:Termino 2019]]
[[Category:Scotty]]
[[Category:Scotty]]
Ligne 21 : Ligne 19 :
'''regularization'''
'''regularization'''


<small>


Source : Nicolas Chapados, Yoshua Bengio (2003). Comment améliorer la capacité de généralisation des algorithmes d'apprentissage pour la prise de décisions financières, Montréal, CIRANO, 68 pages
Source : Nicolas Chapados, Yoshua Bengio (2003). Comment améliorer la capacité de généralisation des algorithmes d'apprentissage pour la prise de décisions financières, Montréal, CIRANO, 68 pages


[https://developers.google.com/machine-learning/glossary/  Source: Google machine learning glossary ]
[https://developers.google.com/machine-learning/glossary/  Source: Google machine learning glossary ]

Version du 17 juin 2019 à 22:21


Définition

Processus qui consiste généralement à pénaliser les valeurs extrêmes des paramètres d'un modèle afin d'éviter un éventuel surajustement.

Note : Les régularisations les plus couramment employées le domaine des mathématiques, statistiques et de l'apprentissage automatique sont les régularisation L1 et L2.

Français

régularisation n.f.

Anglais

regularization


Source : Nicolas Chapados, Yoshua Bengio (2003). Comment améliorer la capacité de généralisation des algorithmes d'apprentissage pour la prise de décisions financières, Montréal, CIRANO, 68 pages

Source: Google machine learning glossary