« Seuil de classification » : différence entre les versions
Aucun résumé des modifications Balise : Éditeur de wikicode 2017 |
Aucun résumé des modifications Balise : Éditeur de wikicode 2017 |
||
Ligne 1 : | Ligne 1 : | ||
[[Category:GRAND LEXIQUE FRANÇAIS]] | [[Category:GRAND LEXIQUE FRANÇAIS]] | ||
[[Category:Vocabulaire2]] | [[Category:Vocabulaire2]] | ||
[[Category:Google2]] | [[Category:Google2]] | ||
[[Category:Apprentissage profond]] | [[Category:Apprentissage profond]] | ||
[[Category:scotty2]] | [[Category:scotty2]] | ||
== Définition == | == Définition == | ||
Critère de valeur scalaire appliqué au score d'un modèle dans le but de séparer la classe positive de la classe négative. Utilisé pour mettre en correspondance les résultats de la régression logistique à la classification binaire. Supposons un modèle de régression logistique qui détermine la probabilité qu'un message donné soit «indésirable». Si le seuil de classification est de 0,9, les valeurs de la régression logistique supérieures à 0,9 sont classées comme «indésirable», et celles inférieures comme «légitime». | Critère de valeur scalaire appliqué au score d'un modèle dans le but de séparer la classe positive de la classe négative. Utilisé pour mettre en correspondance les résultats de la régression logistique à la classification binaire. Supposons un modèle de régression logistique qui détermine la probabilité qu'un message donné soit «indésirable». Si le seuil de classification est de 0,9, les valeurs de la régression logistique supérieures à 0,9 sont classées comme «indésirable», et celles inférieures comme «légitime». | ||
== Français == | == Français == | ||
Ligne 16 : | Ligne 15 : | ||
''' classification threshold ''' | ''' classification threshold ''' | ||
<small> | |||
[https://developers.google.com/machine-learning/glossary/ Source: Google machine learning glossary ] | [https://developers.google.com/machine-learning/glossary/ Source: Google machine learning glossary ] |
Version du 19 juin 2019 à 21:55
Définition
Critère de valeur scalaire appliqué au score d'un modèle dans le but de séparer la classe positive de la classe négative. Utilisé pour mettre en correspondance les résultats de la régression logistique à la classification binaire. Supposons un modèle de régression logistique qui détermine la probabilité qu'un message donné soit «indésirable». Si le seuil de classification est de 0,9, les valeurs de la régression logistique supérieures à 0,9 sont classées comme «indésirable», et celles inférieures comme «légitime».
Français
seuil de classification n.m.
Anglais
classification threshold
Contributeurs: Claire Gorjux, Jacques Barolet, wiki, Robert Meloche