« AlexNet » : différence entre les versions


Aucun résumé des modifications
Aucun résumé des modifications
Ligne 1 : Ligne 1 :
== Domaine ==
== Domaine ==
[[category:Vocabulary]]  Vocabulary
[[category:Vocabulary]]  Vocabulary<br />
 
[[Catégorie:Apprentissage profond]] Apprentissage profond
[[Catégorie:Apprentissage profond]] Apprentissage profond
 
== Définition ==
== Définition ==
   
   

Version du 18 mars 2018 à 20:25

Domaine

Vocabulary
Apprentissage profond

Définition

Termes privilégiés

Anglais

Alexnet

Alexnet is the name of the Convolutional Neural Network architecture that won the ILSVRC 2012 competition by a large margin and was responsible for a resurgence of interest in CNNs for Image Recognition. It consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. Alexnet was introduced in ImageNet Classification with Deep Convolutional Neural Networks. Autoencoder

An Autoencoder is a Neural Network model whose goal is to predict the input itself, typically through a “bottleneck” somewhere in the network. By introducing a bottleneck, we force the network to learn a lower-dimensional representation of the input, effectively compressing the input into a good representation. Autoencoders are related to PCA and other dimensionality reduction techniques, but can learn more complex mappings due to their nonlinear nature. A wide range of autoencoder architectures exist, including Denoising Autoencoders, Variational Autoencoders, or Sequence Autoencoders.