« Probabilité algorithmique » : différence entre les versions


m (Remplacement de texte — « == Domaine == » par « == en construction == <small>Entrez ici les domaines et catégories...</small> »)
m (Remplacement de texte — « <small>Entrez ici les domaines et catégories...</small> » par «  »)
Ligne 1 : Ligne 1 :


== en construction ==  
== en construction ==  
<small>Entrez ici les domaines et catégories...</small>
 
[[Category:Vocabulary]]Vocabulary<br />
[[Category:Vocabulary]]Vocabulary<br />
[[Category:Coulombe]]Coulombe<br />
[[Category:Coulombe]]Coulombe<br />

Version du 3 juillet 2019 à 09:23

en construction

Vocabulary
Coulombe

Définition

Français

probabilité algorithmique

Source: http://www.lifl.fr/SMAC/publications/pdf/these-hector-zenil-chavez.pdf

Anglais

Algorithmic probability

In algorithmic information theory, algorithmic probability, also known as Solomonoff probability, is a mathematical method of assigning a prior probability to a given observation. It was invented by Ray Solomonoff in the 1960s.[1] It is used in inductive inference theory and analyses of algorithms. In his general theory of inductive inference, Solomonoff uses the prior[clarification needed] obtained by this formula[which?], in Bayes' rule for prediction [example needed][further explanation needed].[2]

In the mathematical formalism used, the observations have the form of finite binary strings, and the universal prior is a probability distribution over the set of finite binary strings[citation needed]. The prior is universal in the Turing-computability sense, i.e. no string has zero probability. It is not computable, but it can be approximated.[3]