« Perceptron » : différence entre les versions
Aucun résumé des modifications Balise : Éditeur de wikicode 2017 |
Aucun résumé des modifications Balise : Éditeur de wikicode 2017 |
||
Ligne 10 : | Ligne 10 : | ||
Le perceptron est un algorithme d'apprentissage supervisé de classifieurs binaires (c'est-à-dire séparant deux classes). Il a été inventé en 1957 par Frank Rosenblatt1 au laboratoire d'aéronautique de l'université Cornell. | Le perceptron est un algorithme d'apprentissage supervisé de classifieurs binaires (c'est-à-dire séparant deux classes). Il a été inventé en 1957 par Frank Rosenblatt1 au laboratoire d'aéronautique de l'université Cornell. | ||
C'est un modèle inspiré des théories cognitives de Friedrich Hayek et de Donald Hebb. Il s'agit d'un | C'est un modèle inspiré des théories cognitives de Friedrich Hayek et de Donald Hebb. Il s'agit d'un '''[[neurone formel]]''' muni d'une règle d'apprentissage qui permet de déterminer automatiquement les poids synaptiques de manière à séparer un problème d'apprentissage supervisé. Si le problème est linéairement séparable, un théorème assure que la règle du perceptron permet de trouver une séparatrice entre les deux classes. | ||
==Français== | ==Français== |
Version du 25 juillet 2019 à 14:24
Définition
Le perceptron est un algorithme d'apprentissage supervisé de classifieurs binaires (c'est-à-dire séparant deux classes). Il a été inventé en 1957 par Frank Rosenblatt1 au laboratoire d'aéronautique de l'université Cornell.
C'est un modèle inspiré des théories cognitives de Friedrich Hayek et de Donald Hebb. Il s'agit d'un neurone formel muni d'une règle d'apprentissage qui permet de déterminer automatiquement les poids synaptiques de manière à séparer un problème d'apprentissage supervisé. Si le problème est linéairement séparable, un théorème assure que la règle du perceptron permet de trouver une séparatrice entre les deux classes.
Français
perceptron n. m.
Anglais
perceptron
Contributeurs: Claire Gorjux, Claude Coulombe, Jacques Barolet, wiki, Robert Meloche