« Probabilité algorithmique » : différence entre les versions


m (Remplacement de texte — « Category:Coulombe » par « <!-- Coulombe --> »)
Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Ligne 1 : Ligne 1 :


== en construction ==  
== en construction ==
 
[[Catégorie:Vocabulary]]
[[Category:Vocabulary]]Vocabulary<br />
[[Catégorie:Intelligence artificielle‏‎]]
<!-- Coulombe -->Coulombe<br />
[[Catégorie:Wikipedia-IA]]
[[Catégorie:Coulombe]]


== Définition ==
== Définition ==




== Français ==
== Français ==
Ligne 23 : Ligne 22 :


In the mathematical formalism used, the observations have the form of finite binary strings, and the universal prior is a probability distribution over the set of finite binary strings[citation needed]. The prior is universal in the Turing-computability sense, i.e. no string has zero probability. It is not computable, but it can be approximated.[3]
In the mathematical formalism used, the observations have the form of finite binary strings, and the universal prior is a probability distribution over the set of finite binary strings[citation needed]. The prior is universal in the Turing-computability sense, i.e. no string has zero probability. It is not computable, but it can be approximated.[3]
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>

Version du 18 septembre 2019 à 16:27

en construction

Définition

Français

probabilité algorithmique

Source: http://www.lifl.fr/SMAC/publications/pdf/these-hector-zenil-chavez.pdf

Anglais

Algorithmic probability

In algorithmic information theory, algorithmic probability, also known as Solomonoff probability, is a mathematical method of assigning a prior probability to a given observation. It was invented by Ray Solomonoff in the 1960s.[1] It is used in inductive inference theory and analyses of algorithms. In his general theory of inductive inference, Solomonoff uses the prior[clarification needed] obtained by this formula[which?], in Bayes' rule for prediction [example needed][further explanation needed].[2]

In the mathematical formalism used, the observations have the form of finite binary strings, and the universal prior is a probability distribution over the set of finite binary strings[citation needed]. The prior is universal in the Turing-computability sense, i.e. no string has zero probability. It is not computable, but it can be approximated.[3]