« Logique du premier ordre » : différence entre les versions
m (Remplacement de texte — « <small>Entrez ici les domaines et catégories...</small> » par « ») |
Aucun résumé des modifications Balise : Éditeur de wikicode 2017 |
||
Ligne 1 : | Ligne 1 : | ||
== en construction == | == en construction == | ||
[[Catégorie:Vocabulary]] | |||
[[ | [[Catégorie:Intelligence artificielle]] | ||
[[Catégorie:Wikipedia-IA ]] | |||
== Définition == | == Définition == | ||
Ligne 15 : | Ligne 14 : | ||
== Anglais == | == Anglais == | ||
'''First-order logic''' | |||
'''Predicate logic''' | |||
First-order logic—also known as first-order predicate calculus and predicate logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects and allows the use of sentences that contain variables, so that rather than propositions such as Socrates is a man one can have expressions in the form "there exists X such that X is Socrates and X is a man" and there exists is a quantifier while X is a variable.[1] This distinguishes it from propositional logic, which does not use quantifiers or relations.[2] | First-order logic—also known as first-order predicate calculus and predicate logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects and allows the use of sentences that contain variables, so that rather than propositions such as Socrates is a man one can have expressions in the form "there exists X such that X is Socrates and X is a man" and there exists is a quantifier while X is a variable.[1] This distinguishes it from propositional logic, which does not use quantifiers or relations.[2] | ||
Ligne 22 : | Ligne 24 : | ||
The adjective "first-order" distinguishes first-order logic from higher-order logic in which there are predicates having predicates or functions as arguments, or in which one or both of predicate quantifiers or function quantifiers are permitted.[3] In first-order theories, predicates are often associated with sets. In interpreted higher-order theories, predicates may be interpreted as sets of sets. | The adjective "first-order" distinguishes first-order logic from higher-order logic in which there are predicates having predicates or functions as arguments, or in which one or both of predicate quantifiers or function quantifiers are permitted.[3] In first-order theories, predicates are often associated with sets. In interpreted higher-order theories, predicates may be interpreted as sets of sets. | ||
< | <small> | ||
** [https://www.btb.termiumplus.gc.ca/tpv2source?lang=fra&srchtxt=logique%20premier%20ordre&i=1&index=frt&src_id=IRIA-21984,GOEXP1984,BONINT1984,TESIN1984&rlang=fr&titl=logique%20du%20premier%20ordre&fchrcrdnm=1#resultrecs Termium] | ** [https://www.btb.termiumplus.gc.ca/tpv2source?lang=fra&srchtxt=logique%20premier%20ordre&i=1&index=frt&src_id=IRIA-21984,GOEXP1984,BONINT1984,TESIN1984&rlang=fr&titl=logique%20du%20premier%20ordre&fchrcrdnm=1#resultrecs Termium] | ||
** Mémo : Cours logique - Mémo n˚5, Logique du premier ordre, Emmanuel Coquery, [https://liris.cnrs.fr/~ecoquery/dokuwiki/lib/exe/fetch.php?media=enseignement:logique:logique-memo5.pdf (pdf)] | ** Mémo : Cours logique - Mémo n˚5, Logique du premier ordre, Emmanuel Coquery, [https://liris.cnrs.fr/~ecoquery/dokuwiki/lib/exe/fetch.php?media=enseignement:logique:logique-memo5.pdf (pdf)] | ||
[https://en.wikipedia.org/wiki/Glossary_of_artificial_intelligence Source : Wikipedia] | |||
Version du 19 septembre 2019 à 10:09
en construction
Définition
Français
Logique du premier ordre.
Anglais
First-order logic
Predicate logic
First-order logic—also known as first-order predicate calculus and predicate logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects and allows the use of sentences that contain variables, so that rather than propositions such as Socrates is a man one can have expressions in the form "there exists X such that X is Socrates and X is a man" and there exists is a quantifier while X is a variable.[1] This distinguishes it from propositional logic, which does not use quantifiers or relations.[2]
A theory about a topic is usually a first-order logic together with a specified domain of discourse over which the quantified variables range, finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set of axioms believed to hold for those things. Sometimes "theory" is understood in a more formal sense, which is just a set of sentences in first-order logic.
The adjective "first-order" distinguishes first-order logic from higher-order logic in which there are predicates having predicates or functions as arguments, or in which one or both of predicate quantifiers or function quantifiers are permitted.[3] In first-order theories, predicates are often associated with sets. In interpreted higher-order theories, predicates may be interpreted as sets of sets.
- Mémo : Cours logique - Mémo n˚5, Logique du premier ordre, Emmanuel Coquery, (pdf)
Contributeurs: Claude Coulombe, Imane Meziani, Pierre Labreche, wiki