« Vecteur contextuel » : différence entre les versions
m (Remplacement de texte — « Catégorie:100 » par « ») |
m (Remplacement de texte — « <br /> » par « ») |
||
Ligne 36 : | Ligne 36 : | ||
Source: Nagoudi, El Moatez Billah; Jérémy Ferrero et Didier SchwabDidier Schwab (2017). ''Amélioration de la similarité sémantique vectorielle par méthodes non-supervisées'', Actes de la24e conférence sur le Traitement Automatique des Langues Naturelles (TALN 2017), Orléans, France, 9 pages. | Source: Nagoudi, El Moatez Billah; Jérémy Ferrero et Didier SchwabDidier Schwab (2017). ''Amélioration de la similarité sémantique vectorielle par méthodes non-supervisées'', Actes de la24e conférence sur le Traitement Automatique des Langues Naturelles (TALN 2017), Orléans, France, 9 pages. | ||
Source: Bernier Colborne, Gabriel (2016).'' Aide à l'identification de relations lexicales au moyen de la sémantique distributionnelle et son application à un corpus bilingue du domaine de l'environnement'', thèse de doctorat, Université de Montréal, 265 pages. | Source: Bernier Colborne, Gabriel (2016).'' Aide à l'identification de relations lexicales au moyen de la sémantique distributionnelle et son application à un corpus bilingue du domaine de l'environnement'', thèse de doctorat, Université de Montréal, 265 pages. | ||
[[Utilisateur:Patrickdrouin | Source: Termino]] | [[Utilisateur:Patrickdrouin | Source: Termino]] |
Version du 7 mai 2020 à 12:14
Définition
Représentation répartie issue de l'apprentissage automatique visant à représenter les mots d'un corpus, leurs cooccurrents et leur contexte sous formes de vecteurs de nombres réels.
Note: la représentation répartie obtenue a comme propriété que les mots apparaissant dans des contextes similaires possèdent des vecteurs qui sont relativement proches.
Des représentations par vecteurs-mots populaires sont word2vec et GloVe.
Français
vecteur-mot loc. nom. masc.
plongement lexical loc. nom. masc.
plongement de mot loc. nom. masc.
représentation lexicale loc. nom. fém.
Anglais
word embedding
word vector
Source: Wiktionnaire, Plongement lexical
Source: Turenne, Nicolas (2016). Analyse de données textuelles sous R, Londres, Éditions ISTE, 318 pages.
Source: Nagoudi, El Moatez Billah; Jérémy Ferrero et Didier SchwabDidier Schwab (2017). Amélioration de la similarité sémantique vectorielle par méthodes non-supervisées, Actes de la24e conférence sur le Traitement Automatique des Langues Naturelles (TALN 2017), Orléans, France, 9 pages.
Source: Bernier Colborne, Gabriel (2016). Aide à l'identification de relations lexicales au moyen de la sémantique distributionnelle et son application à un corpus bilingue du domaine de l'environnement, thèse de doctorat, Université de Montréal, 265 pages.
Contributeurs: Claude Coulombe, Jacques Barolet, Patrick Drouin, wiki