« Réseau autoattentif » : différence entre les versions


m (Remplacement de texte — « <!-- Scotty2 --> » par «  »)
Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Ligne 1 : Ligne 1 :
[[Category:Intelligence artificielle]]
[[Category:Apprentissage profond]]
[[Category:Termino 2019]]
[[Category:GRAND LEXIQUE FRANÇAIS]]
==Définition==
==Définition==
Architecture de réseau de neurones profonds très performante en termes de calcul qui utilise le mécanisme d'attention, plus précisément l'auto-attention, pour remplacer à la fois la récurrence et les convolutions.  
Architecture de réseau de neurones profonds très performante en termes de calcul qui utilise le mécanisme d'attention, plus précisément l'auto-attention, pour remplacer à la fois la récurrence et les convolutions.  
Ligne 22 : Ligne 16 :


[[Utilisateur:Patrickdrouin  | Source: Termino]]
[[Utilisateur:Patrickdrouin  | Source: Termino]]
[[Category:Intelligence artificielle]]
[[Category:Apprentissage profond]]
[[Category:Termino 2019]]
[[Category:GRAND LEXIQUE FRANÇAIS]]

Version du 8 mai 2020 à 17:42

Définition

Architecture de réseau de neurones profonds très performante en termes de calcul qui utilise le mécanisme d'attention, plus précisément l'auto-attention, pour remplacer à la fois la récurrence et les convolutions.

Note: soulignons les travaux pionniers du laboratoire MILA dirigé par Yoshua Bengio à l'Université de Montréal qui ont défini un mécanisme d'attention utilisé en traduction automatique neuronale.

Français

réseau de neurones à auto-attention loc. nom. masc.

Anglais

Transformer


Source: Claude Coulombe, Datafranca.org

Source: Termino