« Calcul des prédicats » : différence entre les versions
Aucun résumé des modifications Balise : Éditeur de wikicode 2017 |
Aucun résumé des modifications Balise : Éditeur de wikicode 2017 |
||
Ligne 1 : | Ligne 1 : | ||
== en construction == | == en construction == | ||
[[Catégorie:Vocabulary]] | [[Catégorie:Vocabulary]] | ||
Ligne 9 : | Ligne 8 : | ||
== Français == | == Français == | ||
== Anglais == | == Anglais == | ||
Ligne 15 : | Ligne 13 : | ||
is a formal system of logic in which quantified variables can be used in logic statements. For example, 'all unicorns are beautiful' can be expressed in first-order, or predicate logic, as 'for all X, such that X is unicorn, X is beautiful'. Another type of quantifier could be 'Accenture is a company'. Such statements could not be expressed in prepositional (Boolean) logic. | is a formal system of logic in which quantified variables can be used in logic statements. For example, 'all unicorns are beautiful' can be expressed in first-order, or predicate logic, as 'for all X, such that X is unicorn, X is beautiful'. Another type of quantifier could be 'Accenture is a company'. Such statements could not be expressed in prepositional (Boolean) logic. | ||
<small> | <small> | ||
[https://www.accenture.com/us-en/applied-intelligence-glossary Source : Accenture - applied intelligence glossary ] | [https://www.accenture.com/us-en/applied-intelligence-glossary Source : Accenture - applied intelligence glossary ] |
Version du 9 juin 2020 à 19:07
en construction
Définition
du premier ordre
Français
Anglais
Predicate Calculus
is a formal system of logic in which quantified variables can be used in logic statements. For example, 'all unicorns are beautiful' can be expressed in first-order, or predicate logic, as 'for all X, such that X is unicorn, X is beautiful'. Another type of quantifier could be 'Accenture is a company'. Such statements could not be expressed in prepositional (Boolean) logic.
Contributeurs: Isaline Hodecent, wiki