« Matrice diagonalisable » : différence entre les versions
(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Diagonalizable Matrix ''' A diagonalizable matrix is any square ma... ») |
(Aucune différence)
|
Version du 15 décembre 2020 à 18:02
en construction
Définition
XXXXXXXXX
Français
XXXXXXXXX
Anglais
Diagonalizable Matrix
A diagonalizable matrix is any square matrix or linear map where it is possible to sum the eigenspaces to create a corresponding diagonal matrix.
An n matrix is diagonalizable if the sum of the eigenspace dimensions is equal to n.
A linear map of T : V → V is diagonalizable if the sum of eigenspace dimensions is equal to dim(V),
A matrix that is not diagonalizable is considered “defective.”
The point of this operation is to make it easier to scale data, since you can raise a diagonal matrix to any power simply by raising the diagonal entries to the same. In this case, the diagonal matrix’s determinant is simply the product of all the diagonal entries
Contributeurs: Claire Gorjux, Imane Meziani, wiki