« Statistiques en haute dimension » : différence entre les versions
(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' High-Dimensional Statistics ''' We can compare high-dimensional sta... ») |
m (Remplacement de texte — « DeepAI.org ] » par « DeepAI.org ] Catégorie:DeepAI.org ») |
||
Ligne 19 : | Ligne 19 : | ||
[https://deepai.org/machine-learning-glossary-and-terms/high-dimensional-statistics Source : DeepAI.org ] | [https://deepai.org/machine-learning-glossary-and-terms/high-dimensional-statistics Source : DeepAI.org ] | ||
[[Catégorie:DeepAI.org]] | |||
[[Catégorie:vocabulary]] | [[Catégorie:vocabulary]] |
Version du 15 décembre 2020 à 18:07
en construction
Définition
XXXXXXXXX
Français
XXXXXXXXX
Anglais
High-Dimensional Statistics
We can compare high-dimensional statistics to multivariate statistics. In multivariate statistics, we monitor and analyze possible outcomes of multiple variables. As dimensions get higher, multivariate statistics tend to break down and become less useful. Hence, high-dimensional statistics, statistics that depend on the theory of random vectors and use algorithms built to deal with hundreds or even thousands of dimensions of data, are used. Usually, high-dimensional statistics are especially useful when dealing with data sets that have more dimensions than the sample size.
For more information on high-dimensional statistics, the Simons Institute recorded several lectures on the topic, starting with this one.
Contributeurs: Claire Gorjux, Imane Meziani, wiki