« Expectation Maximization » : différence entre les versions
(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Expectation Maximization''' Expectation maximization (EM) is an alg... ») |
m (Remplacement de texte — « DeepAI.org ] » par « DeepAI.org ] Catégorie:DeepAI.org ») |
||
Ligne 17 : | Ligne 17 : | ||
[https://deepai.org/machine-learning-glossary-and-terms/expectation-maximizationSource : DeepAI.org ] | [https://deepai.org/machine-learning-glossary-and-terms/expectation-maximizationSource : DeepAI.org ] | ||
[[Catégorie:DeepAI.org]] | |||
[[Catégorie:vocabulary]] | [[Catégorie:vocabulary]] |
Version du 15 décembre 2020 à 18:11
en construction
Définition
XXXXXXXXX
Français
XXXXXXXXX
Anglais
Expectation Maximization
Expectation maximization (EM) is an algorithm that finds the best estimates for model parameters when a dataset is missing information or has hidden latent variables. While this technique can be used to determine the maximum likelihood function, or the “best fit” model for a set of data, EM takes things a step further and works on incomplete data sets. This is achieved by inserting random values for the missing data points, and then estimating a second set of data. The new dataset is used to refine the guesses added to the first, with the process repeating until the algorithm’s termination criterion are met.
Contributeurs: Claire Gorjux, wiki