« Expectation Maximization » : différence entre les versions


(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Expectation Maximization''' Expectation maximization (EM) is an alg... »)
 
m (Remplacement de texte — « DeepAI.org ] » par « DeepAI.org ] Catégorie:DeepAI.org  »)
Ligne 17 : Ligne 17 :


[https://deepai.org/machine-learning-glossary-and-terms/expectation-maximizationSource : DeepAI.org ]
[https://deepai.org/machine-learning-glossary-and-terms/expectation-maximizationSource : DeepAI.org ]
[[Catégorie:DeepAI.org]]


[[Catégorie:vocabulary]]
[[Catégorie:vocabulary]]

Version du 15 décembre 2020 à 18:11

en construction

Définition

XXXXXXXXX

Français

XXXXXXXXX

Anglais

Expectation Maximization

Expectation maximization (EM) is an algorithm that finds the best estimates for model parameters when a dataset is missing information or has hidden latent variables. While this technique can be used to determine the maximum likelihood function, or the “best fit” model for a set of data, EM takes things a step further and works on incomplete data sets. This is achieved by inserting random values for the missing data points, and then estimating a second set of data. The new dataset is used to refine the guesses added to the first, with the process repeating until the algorithm’s termination criterion are met.



: DeepAI.org

Contributeurs: Claire Gorjux, wiki