« Canal » : différence entre les versions


m (Remplacement de texte — « <small>Entrez ici les domaines et catégories...</small> » par «  »)
Aucun résumé des modifications
Ligne 1 : Ligne 1 :
== en construction ==  
== en construction ==  


[[category:Vocabulary]]  Vocabulary
[[Catégorie:Apprentissage profond]] Apprentissage profond
== Définition ==
== Définition ==
   
   
Ligne 22 : Ligne 19 :


Input data to Deep Learning models can have multiple channels. The canonical examples are images, which have red, green and blue color channels. A image can be represented as a 3-dimensional Tensor with the dimensions corresponding to channel, height, and width. Natural Language data can also have multiple channels, in the form of different types of embeddings for example.
Input data to Deep Learning models can have multiple channels. The canonical examples are images, which have red, green and blue color channels. A image can be represented as a 3-dimensional Tensor with the dimensions corresponding to channel, height, and width. Natural Language data can also have multiple channels, in the form of different types of embeddings for example.
<small>
[[category:Vocabulary]]
[[Catégorie:Apprentissage profond]]

Version du 20 décembre 2020 à 10:57

en construction

Définition

Français

Anglais

Channel

Input data to Deep Learning models can have multiple channels. The canonical examples are images, which have red, green and blue color channels. A image can be represented as a 3-dimensional Tensor with the dimensions corresponding to channel, height, and width. Natural Language data can also have multiple channels, in the form of different types of embeddings for example.


Contributeurs: Marie Alfaro, wiki