« Modèle large » : différence entre les versions
Aucun résumé des modifications |
Aucun résumé des modifications |
||
Ligne 8 : | Ligne 8 : | ||
== Définition == | == Définition == | ||
Modèle linéaire qui contient généralement un grand nombre de caractéristiques d'entrée creuses. Ce modèle est dit «large», car il s'agit d'un type particulier de réseau de neurones comportant un grand nombre d'entrées connectées directement au nœud de sortie. Les modèles larges sont souvent plus faciles à déboguer et à inspecter que les modèles profonds. Bien qu'ils ne puissent pas exprimer les non-linéarités par le biais de couches cachées, les modèles larges peuvent utiliser des transformations comme le croisement de caractéristiques et | Modèle linéaire qui contient généralement un grand nombre de caractéristiques d'entrée creuses. Ce modèle est dit «large», car il s'agit d'un type particulier de réseau de neurones comportant un grand nombre d'entrées connectées directement au nœud de sortie. Les modèles larges sont souvent plus faciles à déboguer et à inspecter que les modèles profonds. Bien qu'ils ne puissent pas exprimer les non-linéarités par le biais de couches cachées, les modèles larges peuvent utiliser des transformations comme le croisement de caractéristiques et la répartition par classe (''binning'') pour modéliser les non-linéarités de différentes manières. | ||
À comparer avec le modèle profond. | À comparer avec le modèle profond. |
Version du 10 novembre 2018 à 17:02
Domaine
Vocabulaire
Google
Apprentissage profond
Définition
Modèle linéaire qui contient généralement un grand nombre de caractéristiques d'entrée creuses. Ce modèle est dit «large», car il s'agit d'un type particulier de réseau de neurones comportant un grand nombre d'entrées connectées directement au nœud de sortie. Les modèles larges sont souvent plus faciles à déboguer et à inspecter que les modèles profonds. Bien qu'ils ne puissent pas exprimer les non-linéarités par le biais de couches cachées, les modèles larges peuvent utiliser des transformations comme le croisement de caractéristiques et la répartition par classe (binning) pour modéliser les non-linéarités de différentes manières.
À comparer avec le modèle profond.
Termes privilégiés
modèle large n.m.
Anglais
wide model
Contributeurs: Evan Brach, Jacques Barolet, wiki, Robert Meloche