« Convolution pavée » : différence entre les versions
Aucun résumé des modifications Balise : Éditeur de wikicode 2017 |
Aucun résumé des modifications |
||
Ligne 10 : | Ligne 10 : | ||
== Anglais == | == Anglais == | ||
'''tiled convolution''' | '''tiled convolution''' | ||
Hidden layers within Convolutional Neural Networks reduce the number of parameters by "tying" together the adjacent ''N'' x ''N'' weights surrounding each input neuron. Each neuron in the hidden (convolutional) layer is only connected to an ''N'' x ''N'' grid of its surrounding neighbors (centered on a given neuron in the input layer), and the corresponding weights in each ''N'' x ''N'' grid connecting each hidden layer neuron to the input layer are the same (shared) across all hidden layer neurons. This weighted "local receptive field" is mathematically equivalent to a convolution operation (and a convolution is a special case of the more general "matrix multiplication" operation, expressed in fully-connected neural networks where the weights are "untied"). | |||
<small> | <small> | ||
[https://www.quora.com/What-is-a-tiled-convolutional-neural-network Source : quora] | |||
[https://www.apprentissageprofond.org/ Source : ''L'apprentissage profond'', Ian Goodfellow, Yoshua Bengio et Aaron Courville Éd. Massot 2018 ] | [https://www.apprentissageprofond.org/ Source : ''L'apprentissage profond'', Ian Goodfellow, Yoshua Bengio et Aaron Courville Éd. Massot 2018 ] |
Version du 7 janvier 2021 à 17:37
en construction
Définition
Français
convolution pavée
Anglais
tiled convolution
Hidden layers within Convolutional Neural Networks reduce the number of parameters by "tying" together the adjacent N x N weights surrounding each input neuron. Each neuron in the hidden (convolutional) layer is only connected to an N x N grid of its surrounding neighbors (centered on a given neuron in the input layer), and the corresponding weights in each N x N grid connecting each hidden layer neuron to the input layer are the same (shared) across all hidden layer neurons. This weighted "local receptive field" is mathematically equivalent to a convolution operation (and a convolution is a special case of the more general "matrix multiplication" operation, expressed in fully-connected neural networks where the weights are "untied").
Source : quora Source : L'apprentissage profond, Ian Goodfellow, Yoshua Bengio et Aaron Courville Éd. Massot 2018
Contributeurs: Jacques Barolet, Marie Alfaro, wiki