« Détection des données aberrantes » : différence entre les versions


Aucun résumé des modifications
Aucun résumé des modifications
Ligne 9 : Ligne 9 :


== Français ==
== Français ==
'''Dépistage de données aberrantes'''  ??  '''Détection'''  
'''Identification des données aberrantes'''  ??  '  


'''Dépistage de points aberrants'''  ??
'''Identification des points aberrants'''  ??


== Anglais ==
== Anglais ==

Version du 22 janvier 2021 à 14:19

en construction

voir Donnée pertinente

voir Donnée aberrante

Définition

XXXXXXXXX

Français

Identification des données aberrantes  ?? '

Identification des points aberrants  ??

Anglais

Outlier Detection

Outlier Detection refers to the method of identification and classification used to identify observations that are distinctly different or far from others. A popular method to clean a data set, outlier detection allows for defined outliers to inform classification of new observations as anomalies. Outliers are defined between two categories: univariate and multivariate. Univariate outliers are found in distributions in a single feature space, whereas multivariate outliers are found in n-dimensional spaces. Furthermore, outliers are also defined by their environment. Outliers that lay far away from the rest of the data are called "point outliers." Alternatively, "contextual outliers" are found within the data, often appearing as noise. There are a multitude of factors that can contribute to the appearance of an outlier, however those that are not the product of an error are called "novelties."



Source : DeepAI.org

Contributeurs: Imane Meziani, wiki, Sihem Kouache