« Adagrad » : différence entre les versions


(Page créée avec « == Domaine == catégorie:Démo Catégorie Démo Catégorie:Apprentissage profond Apprentissage profond == Définition == == Termes privilégiés ==... »)
 
Aucun résumé des modifications
Ligne 1 : Ligne 1 :
== Domaine ==
== Domaine ==
[[catégorie:Démo]] Catégorie Démo
[[category:Vocabulary]] Vocabulary
[[Catégorie:Apprentissage profond]] Apprentissage profond
[[Catégorie:Apprentissage profond]] Apprentissage profond
   
   

Version du 26 février 2018 à 20:13

Domaine

Vocabulary Apprentissage profond

Définition

Termes privilégiés

Anglais

Adagrad

Adagrad is an adaptive learning rate algorithms that keeps track of the squared gradients over time and automatically adapts the learning rate per-parameter. It can be used instead of vanilla SGD and is particularly helpful for sparse data, where it assigns a higher learning rate to infrequently updated parameters. • Adaptive Subgradient Methods for Online Learning and Stochastic Optimization • Stanford CS231n: Optimization Algorithms • An overview of gradient descent optimization algorithms

Contributeurs: Jacques Barolet, wiki