« Erreur entropie croisée catégorielle » : différence entre les versions


(Page créée avec « == Domaine == catégorie:Démo Catégorie Démo Catégorie:Apprentissage profond Apprentissage profond == Définition == == Termes privilégiés ==... »)
 
Aucun résumé des modifications
Ligne 1 : Ligne 1 :
== Domaine ==
== Domaine ==
[[catégorie:Démo]] Catégorie Démo
[[category:Vocabulary]] Vocabulary
[[Catégorie:Apprentissage profond]] Apprentissage profond
[[Catégorie:Apprentissage profond]] Apprentissage profond
   
   

Version du 26 février 2018 à 20:18

Domaine

Vocabulary Apprentissage profond

Définition

Termes privilégiés

Anglais

Categorical Cross-Entropy Loss

The categorical cross-entropy loss is also known as the negative log likelihood. It is a popular loss function for categorization problems and measures the similarity between two probability distributions, typically the true labels and the predicted labels. It is given by L = -sum(y * log(y_prediction)) where y is the probability distribution of true labels (typically a one-hot vector) and y_prediction is the probability distribution of the predicted labels, often coming from a softmax.

Contributeurs: Imane Meziani, wiki