« Réseau neuronal résiduel » : différence entre les versions
Aucun résumé des modifications |
m (Remplacement de texte — « Termes privilégiés » par « Français ») |
||
Ligne 9 : | Ligne 9 : | ||
== | == Français == | ||
Version du 31 décembre 2018 à 14:54
Domaine
Vocabulary Apprentissage profond
Définition
Français
Anglais
ResNet
Deep Residual Networks won the ILSVRC 2015 challenge. These networks work by introducing shortcut connection across stacks of layers, allowing the optimizer to learn “easier” residual mappings instead of the more complicated original mappings. These shortcut connections are similar to Highway Layers, but they are data-independent and don’t introduce additional parameters or training complexity. ResNets achieved a 3.57% error rate on the ImageNet test set. • Deep Residual Learning for Image Recognition
Contributeurs: Claude Coulombe, Jacques Barolet, wiki