« Model Parameters » : différence entre les versions
(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Model Parameters''' In a machine learning model, there are two type... ») |
Aucun résumé des modifications |
||
Ligne 9 : | Ligne 9 : | ||
== Anglais == | == Anglais == | ||
''' Model Parameters''' | ''' Model Parameters''' | ||
'''Model hyperparameters''' | |||
In a machine learning model, there are two types of parameters: | In a machine learning model, there are two types of parameters: |
Version du 18 octobre 2021 à 10:47
en construction
Définition
XXXXXXXXX
Français
XXXXXXXXX
Anglais
Model Parameters
Model hyperparameters
In a machine learning model, there are two types of parameters:
a) Model Parameters: These are the parameters in the model that must be determined using the training data set. These are the fitted parameters. For example, suppose we have a model such as house price = a + b*(age) + c*(size), to estimate the cost of houses based on the age of the house and its size (square foot), then a, b, and c will be our model or fitted parameters.
b) Hyperparameters: These are adjustable parameters that must be tuned to obtain a model with optimal performance.
It is important that during training, the hyperparameters be tuned to obtain the model with the best performance (with the best-fitted parameters).
Contributeurs: Claire Gorjux, Imane Meziani, wiki