« Model Parameters » : différence entre les versions


(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Model Parameters''' In a machine learning model, there are two type... »)
 
Aucun résumé des modifications
Ligne 9 : Ligne 9 :
== Anglais ==
== Anglais ==
''' Model Parameters'''
''' Model Parameters'''
'''Model hyperparameters'''


In a machine learning model, there are two types of parameters:
In a machine learning model, there are two types of parameters:

Version du 18 octobre 2021 à 10:47

en construction

Définition

XXXXXXXXX

Français

XXXXXXXXX

Anglais

Model Parameters

Model hyperparameters

In a machine learning model, there are two types of parameters:

a) Model Parameters: These are the parameters in the model that must be determined using the training data set. These are the fitted parameters. For example, suppose we have a model such as house price = a + b*(age) + c*(size), to estimate the cost of houses based on the age of the house and its size (square foot), then a, b, and c will be our model or fitted parameters.

b) Hyperparameters: These are adjustable parameters that must be tuned to obtain a model with optimal performance. 

It is important that during training, the hyperparameters be tuned to obtain the model with the best performance (with the best-fitted parameters).


Source : kdnuggets

Contributeurs: Claire Gorjux, Imane Meziani, wiki