« Model Parameters » : différence entre les versions
Aucun résumé des modifications |
Aucun résumé des modifications |
||
Ligne 1 : | Ligne 1 : | ||
== Définition == | == Définition == | ||
[doublon] | [doublon] | ||
Voir '''[[paramètre de modèle]''' | Voir '''[[paramètre de modèle]]''' | ||
== Français == | == Français == |
Version du 9 novembre 2021 à 15:20
Définition
[doublon] Voir paramètre de modèle
Français
paramètre de modèle
Anglais
Model Parameters
Model hyperparameters
In a machine learning model, there are two types of parameters:
a) Model Parameters: These are the parameters in the model that must be determined using the training data set. These are the fitted parameters. For example, suppose we have a model such as house price = a + b*(age) + c*(size), to estimate the cost of houses based on the age of the house and its size (square foot), then a, b, and c will be our model or fitted parameters.
b) Hyperparameters: These are adjustable parameters that must be tuned to obtain a model with optimal performance.
It is important that during training, the hyperparameters be tuned to obtain the model with the best performance (with the best-fitted parameters).
Contributeurs: Claire Gorjux, Imane Meziani, wiki