« Independent component analysis » : différence entre les versions
Aucun résumé des modifications |
Aucun résumé des modifications |
||
Ligne 1 : | Ligne 1 : | ||
==en construction== | ==en construction== | ||
== Définition == | == Définition== | ||
[[DOUBLON]] | |||
VOIR : '''[[analyse en composantes indépendantes]]''' | |||
== Français == | == Français == |
Version du 11 novembre 2021 à 11:51
en construction
Définition
DOUBLON VOIR : analyse en composantes indépendantes
Français
XXXXXXXXX
Anglais
Independent component analysis
In signal processing, independent component analysis (ICA) is a computational method for separating a multivariate signal into additive subcomponents. This is done by assuming that the subcomponents are non-Gaussian signals and that they are statistically independent from each other. ICA is a special case of blind source separation. A common example application is the "cocktail party problem" of listening in on one person's speech in a noisy room.[1]
Contributeurs: Claire Gorjux, Patrick Drouin, wiki