« Erreur Out Of Bag » : différence entre les versions
(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Out-of-bag error''' Out-of-bag (OOB) error, also called out-of-bag... ») |
m (ClaireGorjux a déplacé la page Out-of-bag error vers Erreur Out Of Bag) |
(Aucune différence)
|
Version du 22 novembre 2021 à 09:01
en construction
Définition
XXXXXXXXX
Français
XXXXXXXXX
Anglais
Out-of-bag error
Out-of-bag (OOB) error, also called out-of-bag estimate, is a method of measuring the prediction error of random forests, boosted decision trees, and other machine learning models utilizing bootstrap aggregating (bagging). Bagging uses subsampling with replacement to create training samples for the model to learn from. OOB error is the mean prediction error on each training sample xᵢ, using only the trees that did not have xᵢ in their bootstrap sample.[1]
Bootstrap aggregating allows one to define an out-of-bag estimate of the prediction performance improvement by evaluating predictions on those observations which were not used in the building of the next base learner.
Contributeurs: Claire Gorjux, wiki