« Expectation Maximization » : différence entre les versions


Aucun résumé des modifications
(Page redirigée vers Algorithme EM)
Balise : Nouvelle redirection
Ligne 1 : Ligne 1 :
==en construction==
#REDIRECTION[[Algorithme EM]]


Voir [[algorithme EM]]
[[Catégorie:ENGLISH]]


== Définition ==
XXXXXXXXX


== Français ==
''' XXXXXXXXX '''


== Anglais ==
Voir [[algorithme EM]]
''' Expectation Maximization'''
 
Expectation maximization (EM) is an algorithm that finds the best estimates for model parameters when a dataset is missing information or has hidden latent variables. While this technique can be used to determine the maximum likelihood function, or the “best fit” model for a set of data, EM takes things a step further and works on incomplete data sets. This is achieved by inserting random values for the missing data points, and then estimating a second set of data. The new dataset is used to refine the guesses added to the first, with the process repeating until the algorithm’s termination criterion are met.


<small>




[https://deepai.org/machine-learning-glossary-and-terms/expectation-maximizationSource : DeepAI.org ]
[https://deepai.org/machine-learning-glossary-and-terms/expectation-maximizationSource : DeepAI.org ]
[[Catégorie:DeepAI.org]]
[[Catégorie:vocabulary]]

Version du 16 décembre 2021 à 16:56

Contributeurs: Claire Gorjux, wiki