« Model Parameters » : différence entre les versions


(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Model Parameters''' In a machine learning model, there are two type... »)
 
Aucun résumé des modifications
 
(4 versions intermédiaires par 3 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
==en construction==
#redirection [[paramètre de modèle]]'''


== Définition ==
[[Catégorie:ENGLISH]]
XXXXXXXXX
 
== Français ==
''' XXXXXXXXX '''
 
== Anglais ==
''' Model Parameters'''
 
In a machine learning model, there are two types of parameters:
 
a) Model Parameters: These are the parameters in the model that must be determined using the training data set. These are the fitted parameters. For example, suppose we have a model such as house price = a + b*(age) + c*(size), to estimate the cost of houses based on the age of the house and its size (square foot), then a, b, and c will be our model or fitted parameters.
 
b) Hyperparameters: These are adjustable parameters that must be tuned to obtain a model with optimal performance. 
 
It is important that during training, the hyperparameters be tuned to obtain the model with the best performance (with the best-fitted parameters).
 
 
<small>
[https://www.kdnuggets.com/2020/12/20-core-data-science-concepts-beginners.html  Source : kdnuggets]
 
 
[[Catégorie:vocabulary]]

Dernière version du 3 janvier 2022 à 15:55

Rediriger vers :

Contributeurs: Claire Gorjux, Imane Meziani, wiki