|
|
(2 versions intermédiaires par 2 utilisateurs non affichées) |
Ligne 1 : |
Ligne 1 : |
| == Définition ==
| | #redirection [[paramètre de modèle]]''' |
| [doublon]
| |
| Voir '''[[paramètre de modèle]'''
| |
|
| |
|
| == Français ==
| | [[Catégorie:ENGLISH]] |
| '''paramètre de modèle'''
| |
| | |
| == Anglais ==
| |
| ''' Model Parameters'''
| |
| | |
| '''Model hyperparameters'''
| |
| | |
| In a machine learning model, there are two types of parameters:
| |
| | |
| a) Model Parameters: These are the parameters in the model that must be determined using the training data set. These are the fitted parameters. For example, suppose we have a model such as house price = a + b*(age) + c*(size), to estimate the cost of houses based on the age of the house and its size (square foot), then a, b, and c will be our model or fitted parameters.
| |
| | |
| b) Hyperparameters: These are adjustable parameters that must be tuned to obtain a model with optimal performance.
| |
| | |
| It is important that during training, the hyperparameters be tuned to obtain the model with the best performance (with the best-fitted parameters).
| |
| | |
| | |
| <small>
| |
| [https://www.kdnuggets.com/2020/12/20-core-data-science-concepts-beginners.html Source : kdnuggets]
| |
| | |
| | |
| [[Catégorie:vocabulary]] | |