« AODE » : différence entre les versions


Aucun résumé des modifications
Aucun résumé des modifications
Ligne 1 : Ligne 1 :
==en construction==
== Définition ==
== Définition ==
Consideré comme l’un des algorithmes representatifs les plus intéressants parmi les classifieurs bayésiens
Consideré comme l’un des algorithmes representatifs les plus intéressants parmi les classifieurs bayésiens
Ligne 10 : Ligne 8 :
''' AODE'''
''' AODE'''


''' Averaged one-dependence estimators '''
'''Averaged one-dependence estimators'''


Averaged one-dependence estimators (AODE) is a probabilistic classification learning technique. It was developed to address the attribute-independence problem of the popular naive Bayes classifier. It frequently develops substantially more accurate classifiers than naive Bayes at the cost of a modest increase in the amount of computation.[1]
Averaged one-dependence estimators (AODE) is a probabilistic classification learning technique. It was developed to address the attribute-independence problem of the popular naive Bayes classifier. It frequently develops substantially more accurate classifiers than naive Bayes at the cost of a modest increase in the amount of computation.[1]

Version du 9 février 2022 à 15:45

Définition

Consideré comme l’un des algorithmes representatifs les plus intéressants parmi les classifieurs bayésiens

Français

AODE

Anglais

AODE

Averaged one-dependence estimators

Averaged one-dependence estimators (AODE) is a probabilistic classification learning technique. It was developed to address the attribute-independence problem of the popular naive Bayes classifier. It frequently develops substantially more accurate classifiers than naive Bayes at the cost of a modest increase in the amount of computation.[1]

Source: HAL Archives ouvertes

Source : Wikipedia Machine Learning

Contributeurs: Claire Gorjux, Imane Meziani, wiki