« Modèle » : différence entre les versions


m (Remplacement de texte — « <small>masculin </small> » par «  »)
Aucun résumé des modifications
Ligne 1 : Ligne 1 :
== Définition ==
== Définition ==
En apprentissage automatique:
Un modèle est une représentation de ce qu'un algorithme d'apprentissage automatique apprend à partir des données d'entraînement. Il comporte des paramètres ou des poids et parfois la structure du calcul ou l’architecture du modèle. Une fois entraîné, le modèle peut être sauvegardé dans un fichier. Une fois entraîné, le modèle sera appliqué sur de nouvelles données pour obtenir des résultats.
Par abus de langage, on finit par ne plus distinguer entre l’algorithme d’apprentissage, le modèle, le réseau de neurones et l'architecture du réseau de neurones.
En intelligence artificielle symbolique:
==Compléments==
Représentation de ce qu'un système d'apprentissage automatique a appris à partir des données d'apprentissage. Ce terme complexe peut avoir l'un des deux sens associés suivants :
Représentation de ce qu'un système d'apprentissage automatique a appris à partir des données d'apprentissage. Ce terme complexe peut avoir l'un des deux sens associés suivants :
*  Graphe TensorFlow qui exprime la structure du calcul d'une prédiction
*  Graphe TensorFlow qui exprime la structure du calcul d'une prédiction
Ligne 6 : Ligne 15 :


== Français ==
== Français ==
''' modèle '''
'''modèle'''


== Anglais ==
== Anglais ==
''' model '''
'''model'''


<small>
<small>
Ligne 18 : Ligne 27 :


[[Category:GRAND LEXIQUE FRANÇAIS]]
[[Category:GRAND LEXIQUE FRANÇAIS]]
[[Category:Apprentissage profond]]
[[Category:Apprentissage profond]]

Version du 12 août 2022 à 00:22

Définition

En apprentissage automatique:

Un modèle est une représentation de ce qu'un algorithme d'apprentissage automatique apprend à partir des données d'entraînement. Il comporte des paramètres ou des poids et parfois la structure du calcul ou l’architecture du modèle. Une fois entraîné, le modèle peut être sauvegardé dans un fichier. Une fois entraîné, le modèle sera appliqué sur de nouvelles données pour obtenir des résultats.

Par abus de langage, on finit par ne plus distinguer entre l’algorithme d’apprentissage, le modèle, le réseau de neurones et l'architecture du réseau de neurones.

En intelligence artificielle symbolique:

Compléments

Représentation de ce qu'un système d'apprentissage automatique a appris à partir des données d'apprentissage. Ce terme complexe peut avoir l'un des deux sens associés suivants :

  • Graphe TensorFlow qui exprime la structure du calcul d'une prédiction
  • Pondérations et biais particuliers de ce graphe TensorFlow, déterminés par apprentissage.

- Google

Français

modèle

Anglais

model


Source: Google machine learning glossary