« Classification ascendante hiérarchique » : différence entre les versions
(Page créée avec « __NOTOC__ == Domaine == Category:VocabulaireVocabulaire<br /> Category:scotty <br /> <br /> == Définition == In data mining and statistics, hierarchical clusteri... ») |
|||
Ligne 2 : | Ligne 2 : | ||
== Domaine == | == Domaine == | ||
[[Category:Vocabulaire]]Vocabulaire<br /> | [[Category:Vocabulaire]]Vocabulaire<br /> | ||
[[Category: | [[Category:]] | ||
<br /> | <br /> | ||
<br /> | <br /> |
Version du 20 février 2019 à 11:14
Domaine
Vocabulaire
[[Category:]]
Définition
In data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster analysis which seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two types:[1]
- Agglomerative: This is a "bottom-up" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
- Divisive: This is a "top-down" approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.
In general, the merges and splits are determined in a greedy manner. The results of hierarchical clustering are usually presented in a dendrogram.
Français
algorithme hiérarchique
Anglais
hierarchical clustering
Contributeurs: Evan Brach, Imane Meziani, Jacques Barolet, wiki