« Réseau de croyances profond » : différence entre les versions
Aucun résumé des modifications |
Aucun résumé des modifications |
||
Ligne 8 : | Ligne 8 : | ||
==Compléments== | ==Compléments== | ||
En intelligence artificielle, [[graphe acyclique]] orienté dans lequel les nœuds représentent des [[variable]]s, les arcs représentent des dépendances directes entre les variables liées, et la force de ces dépendances sont quantifiés par des [[probabilité conditionnelle|probabilités conditionnelles]]. | En intelligence artificielle, [[graphe acyclique]] orienté dans lequel les nœuds représentent des [[variable]]s, les arcs représentent des dépendances directes entre les variables liées, et la force de ces dépendances sont quantifiés par des [[probabilité conditionnelle|probabilités conditionnelles]]. | ||
à valider... | |||
==Français== | ==Français== |
Version du 20 septembre 2022 à 13:45
Définition
En apprentissage automatique, un réseau de croyances profond (Deep Belief Network - DBN) est un modèle graphique génératif, ou encore une classe de réseau de neurones profond, composé de plusieurs couches de variables latentes (unités cachées) avec des connexions entre les couches mais pas entre chaque couche.
Lorsqu'il est entraîné sur un ensemble de données sans supervision, un DBN peut apprendre à reconstruire de manière probabiliste ses entrées. Les couches agissent alors comme des détecteurs d'attributs. Après cette étape d'entraînement, un DBN peut être entraîné à nouveau avec supervision pour effectuer une classification.
voir : Machine de Boltzman profonde
Compléments
En intelligence artificielle, graphe acyclique orienté dans lequel les nœuds représentent des variables, les arcs représentent des dépendances directes entre les variables liées, et la force de ces dépendances sont quantifiés par des probabilités conditionnelles.
à valider...
Français
réseau de croyances profond
réseau de croyances
Anglais
Deep Belief Network
DBN
Source: Qwerty wiki, Deep belief network.
Note: réseau de croyances profond désignation validée par des spécialistes canadiens de l'Université Concordia, de l'Université Dalhousie, de l'Université Laval et de Microsoft Canada.
Contributeurs: Claude Coulombe, Jacques Barolet, wiki