« Représentation sémantique compacte » : différence entre les versions


Aucun résumé des modifications
m (Claude COULOMBE a déplacé la page Vecteur dense contextuel vers Vecteur contextuel dense)
(Aucune différence)

Version du 8 décembre 2022 à 13:54

Définition

Modèle résultant de l'opération mathématique qui permet de passer d'une représentation catégorielle et de son contexte à une représentation vectorielle dense (i.e. de plus faible dimension) et continue (i.e. des nombres réels).

Il en découle que des objets similaires possèdent des vecteurs correspondants qui sont proches dans l'espace vectoriel où sont définis ces vecteurs.

Il s'agit d'une représentation distribuée qui tente de décrire le sens d'un objet en considérant ses relations avec d'autres objets de son contexte.

Typiquement, on crée un vecteur dense contextuel avec un algorithme qui réduit la dimension de la représentation afin de rapprocher les objets similaires et d'éloigner les objets différents.

Compléments

L'algorithme de création d'une représentation par un vecteur dense contextuel procède par approximation pour passer d'une représentation discrete vers une représentation dense (i.e. de plus faible dimension) et continue (i.e. vecteur de nombres réels). D'où la proposition du terme « « dense », « vecteur dense contextuel » ou encore « plongement neuronal » puisque ce sont souvent des algorithmes à base de réseaux de neurones.


La modélisation par vecteur dense contextuel, bien que souvent appliquée aux mots, vecteur-mot (word embedding), ne se limite pas à ces derniers et peut être appliquée à des phrases, des documents, des paragraphes, etc. La représentation vectorielle continue s'applique également à d'autres représentations catégorielles comme les différentes marchandises dans un magasin.


Une représentation vectorielle dense et contextuelle peut également être considérée comme une représentation latente.


On distingue trois principaux usages des vecteurs denses contextuels:

  • identifier les plus proches voisins d'un objet ou d'une concept;
  • enrichir l'entrée de données d'un algorithme;
  • visualiser des objets ou des concepts et leurs relations.

Français

vecteur dense contextuel

représentation vectorielle dense

plongement vectoriel

plongement neuronal

Anglais

embedding

neural embedding

Source: Géron, Aurélien (2017) Machine Learning avec Scikit-Learn - Mise en oeuvre et cas concrets, Paris, Dunod, 256 pages.

Source: Goodfellow, Ian; Bengio, Yoshua et Aaron Courville (2018), Apprentissage profond, Paris, Massot éditions, 800 pages.

Source: Google, Glossaire du machine learning.